Absence of singular spectrum for a perturbation of a two-dimensional Laplace-Beltrami operator with periodic electromagnetic potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 317593
(http://iopscience.iop.org/0305-4470/31/37/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:12

Please note that terms and conditions apply.

Absence of singular spectrum for a perturbation of a two-dimensional Laplace-Beltrami operator with periodic electromagnetic potential

Abderemane Morame \dagger
UMR 6629 CNRS, Department of Mathematics, University of Nantes, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3, France

Received 10 November 1997, in final form 18 May 1998

Abstract. Let Γ be a lattice on \mathbb{R}^{2}. We consider a metric g, a one-form A and a real function V on \mathbb{R}^{2}, all Γ periodic. We prove that the spectrum of the Schrödinger operator on $L^{2}\left(\mathbb{R}^{2}\right), u \mapsto P_{g}(D-A) u+V u=(\mathrm{id}+A)^{\star}(\mathrm{id} u+u A)+V u$, is absolutely continuous.

1. Introduction

Let Γ be a lattice on \mathbb{R}^{2}, and $g=\left(g_{j k}\right)$ be a C^{∞}, Γ-periodic metric on \mathbb{R}^{2},

$$
\begin{equation*}
g_{x-a}=g_{x} \quad \forall a \in \Gamma \quad g_{j j}>0 \text { and }|g|=\operatorname{det}\left(g_{j k}\right)>0 . \tag{1.1}
\end{equation*}
$$

We consider a real C^{∞}, Γ-periodic one-form A (a magnetic potential),

$$
\begin{equation*}
A=A_{1}(x) \mathrm{d} x_{1}+A_{2}(x) \mathrm{d} x_{2} \quad A_{j}(x-a)=A_{j}(x) \quad \forall a \in \Gamma \tag{1.2}
\end{equation*}
$$

and a Γ-periodic electrical potential
$V: \mathbb{R}^{2} \mapsto \mathbb{R} \quad V \in L^{\infty}\left(\mathbb{R}^{2}\right) \quad V(x-a)=V(x) \quad \forall a \in \Gamma$.
Hence the Schrödinger operator $P_{g}(D-A)+V=(\mathrm{id}+A)^{\star}(\mathrm{id}+A)+V$,
$P_{g}(D-A)=\sum_{1 \leqslant j, k \leqslant 2}\left|g_{x}\right|^{-1 / 2}\left(D_{x_{j}}-A_{j}(x)\right) g^{j k}(x)\left|g_{x}\right|^{1 / 2}\left(D_{x_{k}}-A_{k}(x)\right)$
is self-adjoint on $L_{g}^{2}\left(\mathbb{R}^{2}\right)=L^{2}\left(\mathbb{R}^{2} ;|g|^{1 / 2} \mathrm{~d} x\right),\left(\mathrm{d} x=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}\right)$, with domain the Sobolev space of order two, $\mathcal{D}\left(P_{g}(D-A)+V\right)=H^{2}\left(\mathbb{R}^{2}\right)$. $\left(D_{x}:=-\mathrm{i} \frac{\partial}{\partial x}=\left(D_{x_{1}}, D_{x_{2}}\right), D_{x_{j}}=\right.$ $-\mathrm{i} \partial_{x_{j}}=-\mathrm{i} \frac{\partial}{\partial x_{j}}$.)

We will identify the magnetic field $\tilde{B}=\mathrm{d} A$ with the real function

$$
\begin{equation*}
B(x)=\frac{\partial}{\partial x_{1}} A_{2}(x)-\frac{\partial}{\partial x_{2}} A_{1}(x) \quad\left(\tilde{B}=B(x) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}\right) \tag{1.5}
\end{equation*}
$$

Green points out in [G] some spectral differences between $P_{g}(D)+V$ and $P_{g_{0}}(D)+V$, with $g_{0}=\left(\delta_{j k}\right)$ the flat metric. Among other things, one can find in [G] examples of conformal metric $g=c_{N} g_{0}$ with more than N gaps in the spectrum of $P_{c_{N} g_{0}}(D)+V$.

Other such examples can be constructed easily for general metric and with particular large magnetic field, using the localization of the spectrum of $P_{g}(D-\lambda A)+V$, as an operator on $L_{g}^{2}\left(\mathbb{T}^{2}\right)=L^{2}\left(\mathbb{T}^{2},|g|^{1 / 2} \mathrm{~d} x\right)$, for large constant λ, established in [H-M-1].

[^0]We let \mathbb{T}^{2} be the Γ-related torus, $\mathbb{T}^{2}:=\mathbb{R}^{2} / \Gamma$, equipped with the Lebesgue measure associated to the metric $g,|g|^{1 / 2} \mathrm{~d} x$.

Let us remark that $P_{g_{0}}(D-A)+V$ has a finite number of gaps in its spectrum, see [Sk] for the case without magnetic field and $[\mathrm{Mh}]$ for the general case. A spectral question is important. Are there any eigenvalues for $P_{g}(D-A)+V$? For the flat metric the answer is no, as it is well known for when $A=0$, see [R-S], and recently proved for $P_{g_{0}}(D-A)+V$ in [B-S] (see also [So] for higher dimensions).
Theorem 1.1. Under the above assumptions, the spectrum of $P_{g}(D-A)+V$ is absolutely continuous.

It follows from this theorem that $P_{g}(D-A)+V$ has no eigenvalues and its spectrum is formed by intervals (with positive lengths).

The strategy of our proof is the Thomas one [T] performed first for $-\Delta+V$ in dimension three, and generalized for all dimensions in [R-S]. As in [B-S], the operator that we use is a perturbation of a product of two elliptic operators, but we differ by not requiring scalar operators. We consider the Schrödinger operator with spin $P_{g, s}(D-A)=P_{g}(D-A) 1_{2}+$ $|g|^{-1 / 2} B(x) \sigma_{3}$ as a product, $P_{g, s}(D-A)=\tilde{\mathcal{D}}_{g}(D-A) \mathcal{D}_{g}(D-A)$, with $\mathcal{D}_{g}(D-A)$ a perturbation of the Dirac operator. As in [K], using multidimensional analytic extension in the Thomas approach, we have just to prove that the operator on $\left(L^{2}\left(\mathbb{T}^{2}\right)\right)^{2}$ defined by $P_{g, s}(D-A-\Theta)$ has no Θ-independent eigenvalue, for $\Theta=\theta_{r} \mathrm{~d} x+\mathrm{i} \theta_{i} \mathrm{~d} x, \theta_{r}, \theta_{i} \in \mathbb{R}^{2}$.

It is easy to find $e \in \mathbb{S}^{1}$ and $c>0$ such that $E\left(\mathcal{D}_{g}(D-A-\Theta)\right)^{\star} \mathcal{D}_{g}(D-A-\Theta) E \geqslant$ $c\left|\theta_{i}\right|^{2} E$, if E is the projection $E u(x)=(u(x) \cdot e) e, \forall u(x) \in\left(C^{\infty}\left(\mathbb{T}^{2}\right)\right)^{2}$.

Exploiting gauge invariance of the spectrum in the analytic extension in the direction $\omega,\left(\theta_{i}=\lambda \omega, \lambda>0\right)$, we hope to show that $\tilde{\mathcal{D}}_{g}(D-A-\Theta)$ has a uniformly bounded inverse. We can easily neglect the magnetic field thanks to the dimension, and so the main difficulty comes from the metric, but we can find a sequence $\left(\Theta_{k}\right)_{k}$, with non-bounded imaginary part, such that $\left(\left(\tilde{\mathcal{D}}_{g}\left(D-A-\Theta_{k}\right)\right)^{-1}\right)_{k}$ is uniformly bounded on $\left(L^{2}\left(\mathbb{T}^{2}\right)\right)^{2}$. Then we get that $E\left(P_{g, s}\left(D-A-\Theta_{k}\right)\right)^{\star} P_{g, s}\left(D-A-\Theta_{k}\right) E \geqslant c\left|\theta_{i, k}\right|^{2} E$ and we can conclude.

We hope that our method can be applied for higher dimensions.
Let us remark that later on, we may take $\Gamma=\mathbb{Z}^{2}$ if we modify g consequently, using the invariance of the spectrum by the action of the linear group $G L(2 ; \mathbb{R})$.

2. Some basic facts from Floquet theory

Let Γ^{\star} be the dual lattice, $\Gamma^{\star}=\left\{\gamma \in \mathbb{R}^{2} ; \gamma a \in 2 \pi \mathbb{Z}, \forall a \in \Gamma\right\}$.
\mathbb{K}^{\star} will denote a basic period cell of the dual lattice, i.e. when $\Gamma=\mathbb{Z}^{2}, \mathbb{K}^{\star}=\left(\left[0,2 \pi[)^{2}\right.\right.$. \mathbb{K}^{\star} will be equipped with the normalized Lebesgue measure $\mathrm{d} \tilde{\theta}=\frac{\mathrm{d} \theta}{\left|\mathbb{K}^{\star}\right|}$.
From now on, we will identify every $\Theta=\left(\Theta_{1}, \Theta_{2}\right) \in \mathbb{C}^{2}$ with the closed one-form $\Theta_{1} \mathrm{~d} x_{1}+\Theta_{2} \mathrm{~d} x_{2}$.

We recall that Floquet theory, see $[\mathrm{R}-\mathrm{S}, \mathrm{K}]$, is valid for $P_{g}(D-A)+V$, so there exists a unitary operator $U, U: L_{g}^{2}\left(\mathbb{K}^{\star} \times \mathbb{T}^{2}\right) \mapsto L_{g}^{2}\left(\mathbb{R}^{2}\right)$, such that
$U^{-1}\left(P_{g}(D-A)+V\right) U=P(D-A-\theta)+V=\int_{\mathbb{K}^{*}}^{\oplus} P_{g, \mathbb{T}^{2}}^{\theta} \mathrm{d} \tilde{\theta}$
$P(D-A-\theta)=\sum_{1 \leqslant j, k \leqslant 2}|g(x)|^{-1 / 2}\left(D_{x_{j}}-\theta_{j}-A_{j}(x)\right) g^{j k}(x)|g(x)|^{1 / 2}\left(D_{x_{k}}-\theta_{k}-A_{k}(x)\right)$
is to be considered as a self-adjoint operator on $L^{2}\left(\mathbb{K}^{\star} ; L_{g}^{2}\left(\mathbb{T}^{2}\right)\right)$, with domain $L^{2}\left(\mathbb{K}^{\star} ; H^{2}\left(\mathbb{T}^{2}\right)\right)$.

For any fixed $\theta \in \mathbb{R}^{2}, P_{g, \mathbb{T}^{2}}^{\theta}$ is the self-adjoint operator on $L_{g}^{2}\left(\mathbb{T}^{2}\right)$ defined by $P(D-A-\theta)+V,\left(\right.$ with domain $\left.H^{2}\left(\mathbb{T}^{2}\right)\right)$.

For any fixed $\Theta \in \mathbb{C}^{2}$, we will define in the same way the operator $P_{g, \mathbb{T}^{2}}^{\Theta}$, with the same domain. As $P_{g, \mathbb{T}^{2}}^{\Theta}$ is a perturbation of the Laplace-Beltrami operator, its spectrum is discrete (formed by eigenvalues with finite multiplicity and with no accumulation point).

Later on we will adopt the notation

$$
\begin{equation*}
P_{g, \mathbb{T}^{2}}(D-A-\Theta)=P_{g, \mathbb{T}^{2}}^{\Theta}-V \tag{2.2}
\end{equation*}
$$

$P_{g, \mathbb{T}^{2}}(D-A-\Theta) u(x)=P(D-A-\Theta) u(x), \forall u \in H^{2}\left(\mathbb{T}^{2}\right)$.
As for the case of the flat metric considered in [R-S] (see theorem 4.1.5 of [K] for general elliptic and periodic self-adjoint differential operator), the following theorem comes from Floquet theory.
Theorem 2.1. For any real open interval $(a, b) \subset \mathbb{R},(a<b<+\infty)$, we have the equivalence

$$
\begin{gather*}
(a, b) \cap \operatorname{sp}\left(P_{g}(D-A)+V\right)=(a, b) \cap \operatorname{sp}_{a c}\left(\left(P_{g}(D-A)+V\right)\right. \\
\Longleftrightarrow(a, b) \cap \operatorname{sp}_{p}\left(\left(P_{g}(D-A)+V\right)=\emptyset\right. \tag{2.3}
\end{gather*}
$$

Moreover

$$
\begin{gather*}
\mu \in \operatorname{sp}_{p}\left(\left(P_{g}(D-A)+V\right) \Longleftrightarrow \mu \in \operatorname{sp}_{d}\left(P_{g, \mathbb{T}^{2}}(D-A-\theta)+V\right) \quad \forall \theta \in \mathbb{R}^{2}\right. \\
\Longleftrightarrow \mu \in \operatorname{sp}_{d}\left(P_{g, \mathbb{T}^{2}}(D-A-\Theta)+V\right) \quad \forall \Theta \in \mathbb{C}^{2} . \tag{2.4}
\end{gather*}
$$

For an operator $T: \operatorname{sp}(T), \operatorname{sp}_{d}(T), \operatorname{sp}_{p}(T)$ and $\mathrm{sp}_{a c}(T)$ denote the spectrum, the discrete spectrum, the point spectrum (eigenvalues), and the absolutely continuous spectrum of T.

We recall that the spectrum of $P_{g}(D-A)+V$ is gauge invariant: the same is true for $P_{g, \mathbb{T}^{2}}(D-A)+V$,
$\operatorname{sp}\left(P_{g}(D-A)+V\right)=\operatorname{sp}\left(P_{g}(D-A-\mathrm{d} \varphi)+V\right) \quad \varphi(x) \in C^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$
and $\operatorname{sp}\left(P_{g, \mathbb{T}^{2}}(D-A)+V\right)=\operatorname{sp}\left(P_{g, \mathbb{T}^{2}}(D-A-\mathrm{d} \varphi)+V\right), \forall \varphi(x) \in C^{2}\left(\mathbb{T}^{2} ; \mathbb{R}\right)$.
We will use the corollary below.
Corollary 2.2. Let $\varphi(x) \in C^{2}\left(\mathbb{T}^{2} ; \mathbb{R}\right)$ and $\omega \in \mathbb{S}^{1}$ be given.
Then $\mu \in \operatorname{sp}_{p}\left(\left(P_{g}(D-A)+V\right)\right.$ iff
$\mu \in \operatorname{sp}_{d}\left(P_{g, \mathbb{T}^{2}}(D-A-\theta-z(\mathrm{~d} \varphi+\omega))+V\right) \quad \forall(z, \theta) \in \mathbb{C} \times \mathbb{R}^{2}$.
This comes from (2.4) when $\varphi=0$ and the fact that $P_{g, \mathbb{T}^{2}}(D-A-\Theta)$ and $P_{g, \mathbb{T}^{2}}(D-A-\Theta-\mathrm{d} \psi)$ have the same eigenvalues, for any $\Theta \in \mathbb{C}$ and any $\psi \in C^{2}\left(\mathbb{T}^{2} ; \mathbb{C}\right)$.

3. Proof of theorem 1.1

The proof of theorem 1.1 comes from the assumption $V \in L^{\infty}\left(\mathbb{T}^{2}\right)$, (2.6) of corollary 2.2 and the theorem below.
Theorem 3.1. For any $\omega \in \mathbb{S}^{1}$, the unit sphere of \mathbb{R}^{2}, there exist $\theta_{\omega} \in \mathbb{R}^{2}, c_{\omega}>0$, an integer $m=m(\omega) \in \mathbb{N}$ and a sequence of non-negative real numbers $\left(\lambda_{k}\right)$, with $\lim _{k \mapsto \infty} \lambda_{k}=+\infty$, such that for any k,

$$
\begin{align*}
& \left\|P_{g, \mathbb{T}^{2}}\left(D-A-\theta_{\omega}-\mathrm{i} \lambda_{k} G(\omega)\right) u\right\| \geqslant \lambda_{k}^{\frac{1}{m+1}} c_{\omega}\|u\| \quad \forall u \in C^{\infty}\left(\mathbb{T}^{2}\right) . \tag{3.1}\\
& G(\omega)=\mathrm{d}\left(\omega x+\psi_{\omega}\right) \quad \text { with } \psi_{\omega} \in C^{\infty}\left(\mathbb{T}^{2} ; \mathbb{R}\right) \\
& \int_{\mathbb{T}^{2}} \psi_{\omega} \mathrm{d} x=0 \quad \text { s.t. } \Delta_{g}\left(\omega x+\psi_{\omega}\right)=0 \tag{3.2}
\end{align*}
$$

$\|$.$\| denotes the L_{g}^{2}$-norm on \mathbb{T}^{2}, and $\Delta_{g}=-P_{g}(D)$ is the g-Laplace-Beltrami operator, and as $\Delta_{g}(\omega x)$ is always a periodic function orthogonal to the constants in $L_{g}^{2}\left(\mathbb{T}^{2}\right)$, the function ψ_{ω} exists and is unique.
Remark 3.2. We just have to prove equation (3.1) for the special conformal metric $|g|^{-1 / 2} g$. If $\tilde{g}=|g|^{-1 / 2} g$, then $g^{j k}|g|^{1 / 2}=\tilde{g}^{j k}$ and $|\tilde{g}|=1$.
The estimate (3.1) becomes

$$
\int_{\mathbb{T}^{2}}|g|^{-1 / 2}\left|P_{\tilde{g}, \mathbb{T}^{2}}\left(D-A-\theta_{\omega}-\mathrm{i} \lambda_{k} G(\omega)\right) u\right|^{2} \mathrm{~d} x \geqslant \lambda_{k}^{\frac{2}{m+1}} c_{\omega}^{2} \int_{\mathbb{T}^{2}}|g|^{1 / 2}|u|^{2} \mathrm{~d} x .
$$

As $|g|$ and $|g|^{-1}$ are bounded, the estimate is equivalent to

$$
\int_{\mathbb{T}^{2}}\left|P_{\tilde{g}, \mathbb{T}^{2}}\left(D-A-\theta_{\omega}-\mathrm{i} \lambda_{k} G(\omega)\right) u\right|^{2} \mathrm{~d} x \geqslant \lambda_{k}^{\frac{2}{m+1}} \tilde{c}_{\omega}^{2} \int_{\mathbb{T}^{2}}|u|^{2} \mathrm{~d} x
$$

So from now on we will assume $|g|=1$ and, due to (2.5) we will work in the particular gauge $\operatorname{div}\left(A^{g}\right)=0$, where A^{g} is the vector field associated to the one-form A by the metric $g,\left(g\left(A^{g},.\right)=A\right)$,
$|g|=1 \quad A=J^{\star}(\mathrm{d} \phi)=-\sum_{k} g^{2 k} \partial_{x_{k}} \phi(x) \mathrm{d} x_{1}+\sum_{k} g^{1 k} \partial_{x_{k}} \phi(x) \mathrm{d} x_{2}$
where J^{\star} is the natural involution on $T^{\star}\left(\mathbb{T}^{2}\right)$ and $\phi(x)$ is the unique periodic function satisfying (we can choose a gauge A such that $\int_{\mathbb{T}^{2}} A^{g} \wedge \theta \mathrm{~d} x=0, \forall \theta \in \mathbb{R}^{2}$)

$$
\begin{equation*}
\Delta_{g} \phi(x)=B(x) \quad \text { and } \quad \int_{\mathbb{T}^{2}} \phi(x) \mathrm{d} x=0 \tag{3.4}
\end{equation*}
$$

For the proof of theorem 3.1, let us introduce the Pauli operators on $\left(L^{2}\left(\mathbb{T}^{2}\right)\right)^{2}$.
For any complex one-form $N=\sum_{j} N_{j}(x) \mathrm{d} x_{j}, N_{j} \in C^{\infty}\left(\mathbb{T}^{2} ; \mathbb{C}\right)$, we let

$$
\begin{equation*}
M^{\mp}(D-N)=\sum_{k} h^{1 k}\left(D_{x_{k}}-N_{k}(x)\right) \mp \mathrm{i} \sum_{k} h^{2 k}\left(D_{x_{k}}-N_{k}(x)\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{M}^{\mp}(D-N)=\sum_{k}\left(D_{x_{k}}-N_{k}(x)\right) h^{1 k} \mp \mathrm{i} \sum_{k}\left(D_{x_{k}}-N_{k}(x)\right) h^{2 k} \tag{3.6}
\end{equation*}
$$

The matrix $\left(h^{j k}\right)$ is the square root of $\left(g^{j k}\right)$:

$$
h^{j j}>0 \quad h^{j k}=h^{k j} \quad \sum_{q} h^{j q} h^{q k}=g^{j k}
$$

$\left(\left(M^{\mp}(D-N)\right)^{\star}=\tilde{M}^{ \pm}(D-\bar{N}).\right)$
With the choice of A in (3.3) we get, $\forall \Theta \in \mathbb{C}^{2}$,

$$
\begin{align*}
& \mathrm{e}^{\mp \phi} M^{\mp}(D-A-\Theta) \mathrm{e}^{ \pm \phi}=M^{\mp}(D-\Theta) \\
& \mathrm{e}^{\mp \phi} \tilde{M}^{\mp}(D-A-\Theta) \mathrm{e}^{ \pm \phi}=\tilde{M}^{\mp}(D-\Theta) \tag{3.7}
\end{align*}
$$

(on the basis that, if h is the matrix $h=\left(h_{j k}\right)$ and $\sigma_{2}=\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right)$ the Pauli matrix, then $\left.h^{-1} \sigma_{2}=\sigma_{2} h\right)$.

Let us define the two Pauli operators:

$$
\begin{align*}
\mathcal{D}(D-N) & =\left(\begin{array}{cc}
0 & M^{-}(D-N) \\
M^{+}(D-N) & 0
\end{array}\right) \tag{3.8}\\
\tilde{\mathcal{D}}(D-N) & =\left(\begin{array}{cc}
0 & \tilde{M}^{-}(D-N) \\
\tilde{M}^{+}(D-N) & 0
\end{array}\right) \tag{3.9}
\end{align*}
$$

If $\mathrm{d} N=B_{N} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}$, then

$$
\tilde{\mathcal{D}}(D-N) \mathcal{D}(D-N)=\left(\begin{array}{cc}
P(D-N)-B_{N} & 0 \tag{3.10}\\
0 & P(D-N)+B_{N}
\end{array}\right)
$$

and $\tilde{\mathcal{D}}(D-\bar{N})=\left(\mathcal{D}(D-N)^{\star}\right.$.
Lemma 3.3. If $\mu_{1}(\lambda, \omega, \theta)$ is the first eigenvalue of $P_{g, \mathbb{T}^{2}}(D-A-\theta)+\lambda^{2}|G(\omega)|_{g_{x}}^{2}$, then
$\|\mathcal{D}(D-A-\theta-\mathrm{i} \lambda G(\omega)) \mathcal{I}(u)\| \geqslant\left(2 \mu_{1}(\lambda, \omega, \theta)\right)^{1 / 2}\|u\|, \forall u \in C^{1}\left(\mathbb{T}^{2}\right)$
and $\forall(\theta, \omega, \lambda) \in \mathbb{R}^{2} \times \mathbb{S}^{1} \times \mathbb{R}$, if $\mathcal{I}(u)=\binom{u}{u}$, for any $u \in L^{2}\left(\mathbb{T}^{2}\right)$.

Proof of lemma 3.3. Taking into account that $|g|=1$ by (3.3), we check the identities

$$
\begin{align*}
& M^{\mp}(D-A-\theta-\mathrm{i} \lambda G(\omega))=M^{\mp}(D-A-\theta \pm \lambda R(\omega)) \\
& \tilde{M}^{\mp}(D-A-\theta-\mathrm{i} \lambda G(\omega))=\tilde{M}^{\mp}(D-A-\theta \pm \lambda R(\omega)) \tag{3.12}
\end{align*}
$$

with $R(\omega)$ the real closed one-form (thanks to (3.2)), linear in ω, defined by

$$
\begin{equation*}
R(\omega)=J^{\star}(G(\omega)) \quad\left(\mathrm{d} R(\omega)=\Delta_{g}\left(\omega x+\psi_{\omega}\right)=0\right) \tag{3.13}
\end{equation*}
$$

So, as for (3.10) we get

$$
\begin{align*}
& (\mathcal{D}(D-A-\theta-\mathrm{i} \lambda G(\omega)))^{\star} \mathcal{D}(D-A-\theta-\mathrm{i} \lambda G(\omega)) \\
& \quad=\left(\begin{array}{cc}
P_{g, \mathbb{T}^{2}}(D-A-\theta-\lambda R(\omega))-B & 0 \\
0 & P_{g, \mathbb{T}^{2}}(D-A-\theta+\lambda R(\omega))+B
\end{array}\right) \tag{3.14}
\end{align*}
$$

and then, for any function $u \in C^{2}\left(\mathbb{T}^{2}\right)$,

$$
\begin{align*}
& \|\mathcal{D}(D-A-\theta-\mathrm{i} \lambda G(\omega)) \mathcal{I}(u)\|^{2} \\
& =2<\left.P_{g, \mathbb{T}^{2}}(D-A-\theta) u\left|u>_{L^{2}\left(\mathbb{T}^{2}\right)}+2 \lambda^{2} \int_{\mathbb{T}^{2}}\right| G(\omega)\right|_{g} ^{2} \times|u|^{2} \mathrm{~d} x . \tag{3.15}
\end{align*}
$$

We used the fact that J^{\star} is isometric, $|R(\omega)|_{g}=\left|J^{\star}(G(\omega))\right|_{g}=|G(\omega)|_{g}$.

Lemma 3.4. Let $\omega \in \mathbb{S}^{1}$. There exists $\theta^{0}=\theta^{0}(\omega) \in \mathbb{R}^{2}$ satisfying: for any $\eta>0$ there exists $c_{2}(\eta)=c_{2}(\eta, \omega)>0$, such that, $\forall \theta \in \mathbb{R}^{2}$ such that $d_{0}\left(\theta \pm\left(\theta^{0}+\lambda \theta^{1}(\omega)\right) ; \Gamma^{\star}\right) \geqslant \eta$, then

$$
\begin{equation*}
\|\tilde{\mathcal{D}}(D-A-\theta-\mathrm{i} \lambda G(\omega)) U\| \geqslant c_{2}(\eta)\|U\| \quad \forall U \in\left(C^{1}\left(\mathbb{T}^{2}\right)\right)^{2} \quad \forall \lambda \in \mathbb{R} \tag{3.16}
\end{equation*}
$$

$d_{0}(\cdot ; \cdot)$ denotes the standard Euclidean distance and

$$
\begin{aligned}
& \theta^{1}(\omega)=\left(\theta_{1}(\omega), \theta_{2}(\omega)\right)=\left(-\sum_{j} g_{0}^{2 j} w_{j}, \sum_{j} g_{0}^{1 j} w_{j}\right) \\
& g_{0}^{k j}=\frac{1}{\left|\mathbb{T}^{2}\right|} \int_{\mathbb{T}^{2}}\left[g_{x}^{k j}+\left(\sum_{m} \partial_{x_{m}} g_{x}^{k m}\right)\left(\Delta_{g}\right)^{-1}\left(\sum_{m} \partial_{x_{m}} g_{x}^{j m}\right)\right] \mathrm{d} x .
\end{aligned}
$$

Proof of lemma 3.4. Let $R(\omega)$ be the one-form defined by (3.13) and let

$$
\begin{equation*}
N_{g}=\sum_{j, k} \partial_{x_{j}} h^{k j}\left(-h^{2 k} \mathrm{~d} x_{1}+h^{1 k} \mathrm{~d} x_{2}\right) \tag{3.17}
\end{equation*}
$$

Then, if $U=\binom{u^{+}}{u^{-}} \in\left(C^{1}\left(\mathbb{T}^{2}\right)\right)^{2}$,

$$
\begin{gather*}
\|\tilde{\mathcal{D}}(D-A-\theta-\mathrm{i} \lambda G(\omega)) U\|^{2}=\left\|M^{+}\left(D-A-N_{g}-\lambda R(\omega)-\theta\right) u^{+}\right\|^{2} \\
+\left\|M^{-}\left(D-A+N_{g}+\lambda R(\omega)-\theta\right) u^{-}\right\|^{2} \tag{3.18}
\end{gather*}
$$

But, as for the definition of $\phi(x)$ in (3.3) and (3.4), we can find $\theta^{0} \in \mathbb{R}^{2}$, two real, periodic functions $\psi(x)$ and $\varphi(x)$ such that

$$
\begin{equation*}
N_{g}=\mathrm{d}\left(\theta^{0} x\right)+\mathrm{d} \varphi(x)+J^{\star}(\mathrm{d} \psi) \tag{3.19}
\end{equation*}
$$

$\left(\psi, \varphi \in C^{\infty}\left(\mathbb{T}^{2} ; \mathbb{R}\right).\right)$ By (3.13),

$$
\begin{equation*}
R(\omega)=\mathrm{d}\left(\theta^{1}(\omega) x+\varphi_{\omega}\right) \quad \text { with } \varphi_{\omega}(x) \in C^{\infty}\left(\mathbb{T}^{2} ; \mathbb{R}\right) \tag{3.20}
\end{equation*}
$$

Taking into account (3.7) and (3.18), we get

$$
\begin{align*}
\| \tilde{\mathcal{D}}(D-A- & \theta-\mathrm{i} \lambda G(\omega)) U\left\|^{2}=\right\| \mathrm{e}^{-\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} M^{+}\left(D-\theta^{0}-\lambda \theta^{1}(\omega)-\theta\right) \\
& \times \mathrm{e}^{\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} u^{+}\left\|^{2}+\right\| \mathrm{e}^{-\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} \\
& \times M^{-}\left(D+\theta^{0}+\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} u^{-} \|^{2} . \tag{3.21}
\end{align*}
$$

So there exists a constant $C_{A, g}>0$ such that

$$
\begin{align*}
\| \tilde{\mathcal{D}}(D-A- & \theta-\mathrm{i} \lambda G(\omega)) U \|^{2} \\
\geqslant & C_{A, g}\left\{\left\|M^{+}\left(D-\theta^{0}-\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} u^{+}\right\|^{2}\right. \\
& \left.+\left\|M^{-}\left(D+\theta^{0}+\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} u^{-}\right\|^{2}\right\} \\
= & C_{A, g}\left\{\left\langle P_{g, \mathbb{T}^{2}}\left(D-\theta^{0}-\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} u^{+} \mid \mathrm{e}^{\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} u^{+}\right\rangle_{L^{2}\left(\mathbb{T}^{2}\right)}\right. \\
& \left.+\left\langle P_{g, \mathbb{T}^{2}}\left(D+\theta^{0}+\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} u^{-} \mid \mathrm{e}^{\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} u^{-}\right\rangle_{L^{2}\left(\mathbb{T}^{2}\right)}\right\} . \tag{3.22}
\end{align*}
$$

Finally, changing $C_{A, g}$ from (3.22) the estimate follows

$$
\begin{align*}
& \|\tilde{\mathcal{D}}(D-A-\theta-\mathrm{i} \lambda G(\omega)) U\|^{2} \\
& \geqslant \\
& \quad C_{A, g}\left\{\|\left(D-\theta^{0}-\lambda \theta^{1}\left(\operatorname{theta}^{1}(\omega)-\theta\right) \mathrm{e}^{\left(\phi+\psi-\mathrm{i} \varphi-\mathrm{i} \lambda \varphi_{\omega}\right)} u^{+} \|^{2}\right.\right. \tag{3.23}\\
& \left.\quad+\left\|\left(D+\theta^{0}+\lambda \theta^{1}(\omega)-\theta\right) \mathrm{e}^{\left(-\phi+\psi+\mathrm{i} \varphi+\mathrm{i} \lambda \varphi_{\omega}\right)} u^{-}\right\|^{2}\right\}
\end{align*}
$$

which proves (3.16).

Lemma 3.5. For any $\omega \in \mathbb{S}^{1}$, there exists an integer $m \in \mathbb{N}$ and a constant C_{ω} such that

$$
\begin{equation*}
\mu_{1}(\lambda, \omega, \theta) \geqslant \lambda^{\frac{2}{m+1}} / C_{\omega} \quad \forall \lambda>1 / C_{\omega} \quad \theta \in \mathbb{K} \tag{3.24}
\end{equation*}
$$

$\mu_{1}(\lambda, \omega, \theta)$ denotes the first eigenvalue of $P_{g, \mathbb{T}^{2}}(D-A-\theta)+\lambda^{2}|G(\omega)|_{g_{x}}^{2}$.

Proof of lemma 3.5. The min-max principle (see [R-S]), gives the formula of the ground state energy
$\mu_{1}(\lambda, \omega, \theta)=\inf _{\|u\|=1}\left\{\left\|M^{+}(D-A-\theta) u\right\|^{2}+\int_{\mathbb{T}^{2}}\left(\lambda^{2}|G(\omega)|_{g_{x}}^{2}+B(x)\right)|u|^{2} \mathrm{~d} x\right\}$.
From (3.25), (3.18) and (3.21) it is sufficient to prove (3.24) when $A=0$, (B is bounded). If $|G(\omega)|_{g_{x}}>0, \forall x \in \mathbb{T}^{2}$, then (3.24) is obvious with $m=0$.

But the zeros of the function $x \mapsto|G(\omega)|_{g_{x}}$, if they exist, are isolated:

$$
\begin{equation*}
|G(\omega)|_{g_{x}}=0 \Longleftrightarrow x \in \mathcal{Z}=\left\{z_{1}, \ldots, z_{N}\right\} \tag{3.26}
\end{equation*}
$$

More precisely, for each zero z_{j} there exists an integer $m_{j} \in \mathbb{N}$ and a constant C_{j} such that
$C_{j}^{-1}\left|x-z_{j}\right|^{m_{j}} \leqslant|G(\omega)|_{g_{x}} \leqslant C_{j}\left|x-z_{j}\right|^{m_{j}} \quad$ if $\left|x-z_{j}\right|^{m_{j}} \leqslant C_{j}^{-1}$.
To be convinced, recall that $G(\omega)=\mathrm{d} f_{\omega}$ with $f_{\omega}(x)=\omega x+\psi_{\omega}(x)$ which is a g-harmonic function. But it is well known that for any $x_{0} \in \mathbb{T}^{2}$, there exist local coordinates in a neighbourhood of x_{0} such that the metric g becomes conformal to the flat one, see for example $[\mathrm{Sp}]$. (Take for example $y=\left(y_{1}(x), y_{2}(x)\right.$ with $y_{j}(x) g$-harmonic functions, $\mathrm{d} y_{1, x_{0}} \neq 0$ and $\mathrm{d} y_{2}=J^{\star}\left(\mathrm{d} y_{1}\right)$.)

So the function f_{ω} is (locally) the real part of some holomorphic function, for some locally complex structure, and then (3.26) and (3.27) are valid.

We get from (3.26) and (3.27) that, if $A=0$, there exists C_{ω} such that
$\inf _{j}\left\{\mu_{1, j}(\lambda, \omega)\right\} \leqslant \inf _{j}\left\{\mu_{1, j}^{0}(\lambda, \omega)\right\} \leqslant C_{\omega}^{0} \mu_{1}(\lambda, \omega, \theta) \quad \forall \lambda>C_{\omega} \quad \theta \in \mathbb{K}$
for some constant C_{ω}^{0}, if $\mu_{1, j}(\lambda, \omega)$ is the first eigenvalue of the Schrödinger operator $-\Delta+\lambda^{2} C_{\omega}^{-1}\left|x-z_{j}\right|^{2 m_{j}}$ on $L^{2}\left(\mathbb{R}^{2}\right)$, and if $\mu_{1, j}^{0}(\lambda, \omega)$ is the one for the Dirichlet problem on the ball $B\left(z_{j} ; C_{\omega}^{-1}\right)$ of the same operator.

So by scaling we get from (3.28)

$$
\begin{equation*}
\inf _{j}\left\{\lambda^{\frac{2}{m_{j}+1}} \mu_{1, j}\right\} \leqslant C_{\omega} \mu_{1}(\lambda, \omega, \theta) \quad \forall \lambda>C_{\omega} \quad \theta \in \mathbb{K} \tag{3.29}
\end{equation*}
$$

if $\mu_{1, j}$ is the first eigenvalue of the Schrödinger operator $-\Delta+|x|^{2 m_{j}}$ on $L^{2}\left(\mathbb{R}^{2}\right)$.
The second estimate of (3.28) (the right one), can be obtained in the following way. We take a smooth partition of unity $\left\{\varphi_{0}, \varphi_{1}, \ldots, \varphi_{N}\right\}$ on \mathbb{T}^{2} such that

$$
\begin{gathered}
\sum_{j=0}^{N} \varphi_{j}^{2}(x)=1 \quad \operatorname{Supp}\left(\varphi_{j}\right) \subset B\left(z_{j} ; C_{\omega}^{-1}\right) \quad \operatorname{Supp}\left(\varphi_{0}\right) \cap B\left(z_{j} ; \frac{1}{2} C_{\omega}^{-1}\right)=\emptyset \\
\text { for } j=1, \ldots, N .
\end{gathered}
$$

For any $u \in H^{1}\left(\mathbb{T}^{2}\right)$, since $M^{+}(D)$ is a one-form $\sum_{j=0}^{N} \varphi_{j} M^{+}(D)\left(\varphi_{j}\right)=0 \quad$ and $\quad M^{+}(D)\left(\varphi_{j} u\right)=\varphi_{j} M^{+}(D)(u)+u M^{+}(D)\left(\varphi_{j}\right)$
it follows that

$$
\begin{aligned}
\left\|M^{+}(D) u\right\|^{2}= & \sum_{j=0}^{N}\left\|\varphi_{j} M^{+}(D) u\right\|^{2}=\sum_{j=0}^{N}\left[\left\|M^{+}(D)\left(\varphi_{j} u\right)-u M^{+}(D)\left(\varphi_{j}\right)\right\|^{2}\right. \\
= & \sum_{j=0}^{N}\left[\left\|M^{+}(D)\left(\varphi_{j} u\right)\right\|^{2}+\left\|u M^{+}(D)\left(\varphi_{j}\right)\right\|^{2}\right] \\
& -\sum_{j=0}^{N}\left[\left\langle M^{+}(D)\left(\varphi_{j} u\right) \mid u M^{+}(D)\left(\varphi_{j}\right)\right\rangle+\left\langle u M^{+}(D)\left(\varphi_{j}\right) \mid M^{+}(D)\left(\varphi_{j} u\right)\right\rangle\right] .
\end{aligned}
$$

Writing

$$
\begin{gathered}
\left\langle M^{+}(D)\left(\varphi_{j} u\right) \mid u M^{+}(D)\left(\varphi_{j}\right)\right\rangle+\left\langle u M^{+}(D)\left(\varphi_{j}\right) \mid M^{+}(D)\left(\varphi_{j} u\right)\right\rangle=2\left\|u M^{+}(D)\left(\varphi_{j}\right)\right\|^{2} \\
+\left\langle M^{+}(D)(u) \mid u \varphi_{j} M^{+}(D)\left(\varphi_{j}\right)\right\rangle+\left\langle u \varphi_{j} M^{+}(D)\left(\varphi_{j}\right) \mid M^{+}(D)(u)\right\rangle
\end{gathered}
$$

then summing, we get the equality

$$
\left\|M^{+}(D) u\right\|^{2}=\sum_{j=0}^{N}\left\|M^{+}(D)\left(\varphi_{j} u\right)\right\|^{2}-\int_{\mathbb{T}^{2}}|u|^{2} \sum_{j=0}^{N}\left|M^{+}(D)\left(\varphi_{j}\right)\right|^{2} \mathrm{~d} x
$$

We recall that $\mu_{1, j}^{0}(\lambda, \omega) \leqslant \lambda^{2} C_{\omega}^{-2 m_{j}-1}+\mu_{1}^{0}(\omega) \leqslant \lambda^{2} C_{\omega}^{\prime}$, for some constant $C_{\omega}^{\prime}>1$, if $\lambda>C_{\omega},\left(\mu_{1}^{0}(\omega)\right.$ is the first eigenvalue of the Dirichlet problem associated to $-\Delta$ on $\left.B\left(z_{j} ; C_{\omega}^{-1}\right)\right)$.

We recall also that

$$
\begin{gathered}
\left\|M^{+}(D)\left(\varphi_{0} u\right)\right\|^{2}+\lambda^{2}\left\||G(\omega)|_{g} \varphi_{0} u\right\|^{2} \geqslant \lambda^{2}\left(C_{\omega}^{\prime \prime}\right)^{-1}\left\|\varphi_{0} u\right\|^{2} \\
\geqslant\left(C_{\omega}^{1}\right)^{-1} \inf _{k} \mu_{1, k}^{0}(\lambda, \omega)\left\|\varphi_{0} u\right\|^{2}
\end{gathered}
$$

for some constant $C_{\omega}^{\prime \prime}>1$, if $C_{\omega}^{1}=C_{\omega}^{\prime} C_{\omega}^{\prime \prime}$.
So, for any $j=0, \ldots, N$,

$$
\left\|M^{+}(D)\left(\varphi_{j} u\right)\right\|^{2}+\lambda^{2}\left\||G(\omega)|_{g} \varphi_{j} u\right\|^{2} \geqslant\left(C_{\omega}^{1}\right)^{-1} \inf _{k} \mu_{1, k}^{0}(\lambda, \omega)\left\|\varphi_{j} u\right\|^{2}
$$

and then
$\left\|M^{+}(D)(u)\right\|^{2}+\lambda^{2}\left\||G(\omega)|_{g} u\right\|^{2} \geqslant\left[\left(C_{\omega}^{1}\right)^{-1} \inf _{k} \mu_{1, k}^{0}(\lambda, \omega)-C_{\omega, 2}\right]\left\|\varphi_{j} u\right\|^{2}$
with $C_{\omega, 2}$ the maximum on \mathbb{T}^{2} of $\sum_{j}\left|M^{+}(D)\left(\varphi_{j}\right)\right|^{2}$.
The second estimate of (3.28) follows for large $\lambda,\left(\mu_{1, j}^{0}(\lambda, \omega) \mapsto+\infty\right.$ when $\left.\lambda \mapsto+\infty\right)$.

End of the proof of theorem 3.1. We have seen that it is sufficient to take $\Gamma=\mathbb{Z}^{2}$. Let θ_{ω} such that $\theta_{\omega, 1} \pm \theta_{1}^{0} \notin 2 \pi \mathbb{Z}$ and let $\mu>0$ such that $\mu \theta_{1}^{1}(\omega) \in 2 \pi \mathbb{Z}$.

Then we can take $\left(\lambda_{k}\right)=(n(k) \mu)$ for any increasing sequence of non-negative integer $(n(k))$, therefore there exists $\eta>0$ such that $d_{0}\left(\theta_{\omega} \mp\left(\theta^{0}+\lambda_{k} \theta^{1}(\omega)\right) ; \Gamma^{\star}\right)>\eta$.

With $\lambda=\lambda_{k}$, applying lemma 3.4 to $U=\mathcal{D}\left(D-A-\theta_{\omega}-\mathrm{i} \lambda_{k} G(\omega)\right) \mathcal{I}(u)$ and then using lemma 3.3 to estimate U above, we get (3.1) from (3.10), (3.16), (3.11), lemma 3.5 and from $B \in L^{\infty}\left(\mathbb{T}^{2}\right)$.

Remark 3.6. There exists $\omega \in \mathbb{S}^{1}$ such that $m=0$ in (3.1), iff $F^{\star}(g)=c(y) g_{0}$, for some non-negative and $u(\Gamma)$-periodic function $c(y) \in C^{\infty}\left(\mathbb{R}^{2}\right)$, with $u \in G L(2 ; \mathbb{R})$ and F is a \mathbb{R}^{2}-diffeomorphism of the form $F(x)=u(x)+\left(\psi_{1}(x), \psi_{2}(x)\right)$, with $\psi_{j}(x) \in C^{\infty}\left(\mathbb{T}^{2}\right)$.

If $\omega \in \mathbb{S}^{1}$ is such that $|G(\omega)|_{g_{x}}>0$, then $\psi_{1}(x)=\psi_{\omega}(x)-\psi_{\omega}(0)$ and $F=$ $\left(f_{1}, f_{2}\right), f_{1}(x)=\omega x+\psi_{1}(x)$, and $f_{2}(x)=\tilde{\omega} x+\psi_{2}(x)$ is the g-harmonic function such that $\mathrm{d} f_{2}=J^{\star}\left(\mathrm{d} f_{1}\right)$ and $f_{2}(0)=0$.

The f_{j} are g-harmonic and $F(\Gamma)=u(\Gamma), u(x)=(\omega x, \tilde{\omega} x)$.
Otherwise, using semiclassical analysis method as in [H-M-1], one can get easily the equivalence in (3.24): $\mu_{1}(\lambda, \omega, \theta) / \lambda^{\frac{2}{m+1}}$ is also bounded.

Acknowledgments

We are grateful to the referees whose remarks were useful for perfecting the proof.

References

[^1][H-M-1] Helffer B and Mohamed A 1996 Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells J. Funct. Anal. 138 40-81
[K] Kuchment P 1993 Floquet theory for partial differential equations Operator Theory, Advances and Applications vol 60 (Basel: Birkhäuser)
[Mh] Mohamed A 1997 Asymptotic of the density of states for the Schrodinger operator with electromagnetic potential J. Math. Phys. 38 4023-51
[R-S] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV (New York: Academic)
[Sk] Skriganov M M 1979 Proof of the Bethe-Sommerfeld conjecture in dimension two Sov. Math. Dokl. 20 956-9
[So] Sobolev A 1997 Absolute continuity of the periodic magnetic Schrödinger operator Mathematical Physics Preprint mp-arc, 97-637
[Sp] Spivak M 1975 Differential Geometry (Houston, TX: Publish or Perish)
[T] Thomas L E 1973 Time dependent approach to scattering from impurities in a cristal Commun. Math. Phys. 33 335-43

[^0]: \dagger E-mail address: morame@math.univ-nantes.fr

[^1]: [B-S] Birman M Sh and Suslina T A 1998 Two-dimensional periodic magnetic hamiltonian is absolutely continuous St. Petersburg Math. J. 9 21-32
 [G] Green E L 1997 Spectral theory of Laplace-Beltrami operators with periodic metrics J. Diff. Eqns 133 15-29

