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Absence of singular spectrum for a perturbation of a
two-dimensional Laplace–Beltrami operator with periodic
electromagnetic potential
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UMR 6629 CNRS, Department of Mathematics, University of Nantes, 2 rue de la Houssiniere,
BP 92208, F-44322 Nantes Cedex 3, France

Received 10 November 1997, in final form 18 May 1998

Abstract. Let 0 be a lattice onR2. We consider a metricg, a one-formA and a real
function V onR2, all 0 periodic. We prove that the spectrum of the Schrödinger operator on
L2(R2), u 7→ Pg(D − A)u+ V u = (id+ A)?(idu+ uA)+ V u, is absolutely continuous.

1. Introduction

Let 0 be a lattice onR2, andg = (gjk) be aC∞, 0-periodic metric onR2,

gx−a = gx ∀a ∈ 0 gjj > 0 and|g| = det(gjk) > 0. (1.1)

We consider a realC∞, 0-periodic one-form A (a magnetic potential),

A = A1(x) dx1+ A2(x) dx2 Aj(x − a) = Aj(x) ∀a ∈ 0 (1.2)

and a0-periodic electrical potential

V : R2 7→ R V ∈ L∞(R2) V (x − a) = V (x) ∀a ∈ 0. (1.3)

Hence the Schrödinger operatorPg(D − A)+ V = (id+ A)?(id+ A)+ V,
Pg(D − A) =

∑
16j,k62

|gx |−1/2(Dxj − Aj(x))gjk(x)|gx |1/2(Dxk − Ak(x)) (1.4)

is self-adjoint onL2
g(R2) = L2(R2; |g|1/2 dx), (dx = dx1 ∧ dx2), with domain the Sobolev

space of order two,D(Pg(D − A) + V ) = H 2(R2). (Dx := −i ∂
∂x
= (Dx1,Dx2),Dxj =

−i∂xj = −i ∂
∂xj
.)

We will identify the magnetic fieldB̃ = dA with the real function

B(x) = ∂

∂x1
A2(x)− ∂

∂x2
A1(x) (B̃ = B(x) dx1 ∧ dx2). (1.5)

Green points out in [G] some spectral differences betweenPg(D)+V andPg0(D)+V ,
with g0 = (δjk) the flat metric. Among other things, one can find in [G] examples of
conformal metricg = cNg0 with more thanN gaps in the spectrum ofPcNg0(D)+ V .

Other such examples can be constructed easily for general metric and with particular
large magnetic field, using the localization of the spectrum ofPg(D − λA) + V , as an
operator onL2

g(T2) = L2(T2, |g|1/2 dx), for large constantλ, established in [H-M-1].
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We let T2 be the0-related torus,T2 := R2/0, equipped with the Lebesgue measure
associated to the metricg, |g|1/2 dx.

Let us remark thatPg0(D−A)+V has a finite number of gaps in its spectrum, see [Sk]
for the case without magnetic field and [Mh] for the general case. A spectral question is
important. Are there any eigenvalues forPg(D−A)+V ? For the flat metric the answer is
no, as it is well known for whenA = 0, see [R-S], and recently proved forPg0(D−A)+V
in [B-S] (see also [So] for higher dimensions).

Theorem 1.1.Under the above assumptions, the spectrum ofPg(D − A)+ V is absolutely
continuous.

It follows from this theorem thatPg(D − A)+ V has no eigenvalues and its spectrum
is formed by intervals (with positive lengths).

The strategy of our proof is the Thomas one [T] performed first for−1+V in dimension
three, and generalized for all dimensions in [R-S]. As in [B-S], the operator that we use is
a perturbation of a product of two elliptic operators, but we differ by not requiring scalar
operators. We consider the Schrödinger operator with spinPg,s(D −A) = Pg(D −A)12+
|g|−1/2B(x)σ3 as a product,Pg,s(D − A) = D̃g(D − A)Dg(D − A), with Dg(D − A) a
perturbation of the Dirac operator. As in [K], using multidimensional analytic extension
in the Thomas approach, we have just to prove that the operator on(L2(T2))2 defined by
Pg,s(D − A−2) has no2-independent eigenvalue, for2 = θr dx + iθidx, θr , θi ∈ R2.

It is easy to finde ∈ S1 andc > 0 such thatE(Dg(D −A−2))?Dg(D −A−2)E >
c|θi |2E, if E is the projectionEu(x) = (u(x) · e)e, ∀u(x) ∈ (C∞(T2))2.

Exploiting gauge invariance of the spectrum in the analytic extension in the direction
ω, (θi = λω, λ > 0), we hope to show that̃Dg(D−A−2) has a uniformly bounded inverse.
We can easily neglect the magnetic field thanks to the dimension, and so the main difficulty
comes from the metric, but we can find a sequence(2k)k, with non-bounded imaginary
part, such that((D̃g(D − A −2k))

−1)k is uniformly bounded on(L2(T2))2. Then we get
thatE(Pg,s(D − A−2k))

?Pg,s(D − A−2k)E > c|θi,k|2E and we can conclude.
We hope that our method can be applied for higher dimensions.
Let us remark that later on, we may take0 = Z2 if we modify g consequently, using

the invariance of the spectrum by the action of the linear groupGL(2;R).

2. Some basic facts from Floquet theory

Let 0? be the dual lattice,0? = {γ ∈ R2; γ a ∈ 2πZ, ∀a ∈ 0}.
K? will denote a basic period cell of the dual lattice, i.e. when0 = Z2,K? = ([0, 2π [)2.
K? will be equipped with the normalized Lebesgue measure dθ̃ = dθ

|K?| .
From now on, we will identify every2 = (21,22) ∈ C2 with the closed one-form

21 dx1+22 dx2.

We recall that Floquet theory, see [R-S, K], is valid forPg(D−A)+V , so there exists
a unitary operatorU,U : L2

g(K? × T2) 7→ L2
g(R2), such that

U−1(Pg(D − A)+ V )U = P(D − A− θ)+ V =
∫ ⊕
K?
P θ
g,T2 dθ̃

P (D − A− θ) =
∑

16j,k62

|g(x)|−1/2(Dxj − θj − Aj(x))gjk(x)|g(x)|1/2(Dxk − θk − Ak(x))

(2.1)

is to be considered as a self-adjoint operator onL2(K?;L2
g(T2)), with domain

L2(K?;H 2(T2)).
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For any fixed θ ∈ R2, P θ
g,T2 is the self-adjoint operator onL2

g(T2) defined by

P(D − A− θ)+ V , (with domainH 2(T2)).
For any fixed2 ∈ C2, we will define in the same way the operatorP2

g,T2, with the

same domain. AsP2
g,T2 is a perturbation of the Laplace–Beltrami operator, its spectrum is

discrete (formed by eigenvalues with finite multiplicity and with no accumulation point).
Later on we will adopt the notation

Pg,T2(D − A−2) = P2
g,T2 − V. (2.2)

Pg,T2(D − A−2)u(x) = P(D − A−2)u(x), ∀u ∈ H 2(T2).
As for the case of the flat metric considered in [R-S] (see theorem 4.1.5 of [K] for

general elliptic and periodic self-adjoint differential operator), the following theorem comes
from Floquet theory.

Theorem 2.1.For any real open interval(a, b) ⊂ R, (a < b < +∞), we have the
equivalence

(a, b) ∩ sp(Pg(D − A)+ V ) = (a, b) ∩ spac((Pg(D − A)+ V )
⇐⇒ (a, b) ∩ spp((Pg(D − A)+ V ) = ∅. (2.3)

Moreover

µ ∈ spp((Pg(D − A)+ V )⇐⇒ µ ∈ spd(Pg,T2(D − A− θ)+ V ) ∀θ ∈ R2

⇐⇒ µ ∈ spd(Pg,T2(D − A−2)+ V ) ∀2 ∈ C2. (2.4)

For an operatorT : sp(T ), spd(T ), spp(T ) and spac(T ) denote the spectrum, the discrete
spectrum, the point spectrum (eigenvalues), and the absolutely continuous spectrum ofT .

We recall that the spectrum ofPg(D −A)+ V is gauge invariant: the same is true for
Pg,T2(D − A)+ V ,

sp(Pg(D − A)+ V ) = sp(Pg(D − A− dϕ)+ V ) ϕ(x) ∈ C2(R2;R) (2.5)

and sp(Pg,T2(D − A)+ V ) = sp(Pg,T2(D − A− dϕ)+ V ), ∀ϕ(x) ∈ C2(T2;R).
We will use the corollary below.

Corollary 2.2. Let ϕ(x) ∈ C2(T2;R) andω ∈ S1 be given.
Thenµ ∈ spp((Pg(D − A)+ V ) iff

µ ∈ spd(Pg,T2(D − A− θ − z(dϕ + ω))+ V ) ∀(z, θ) ∈ C× R2. (2.6)

This comes from (2.4) whenϕ = 0 and the fact thatPg,T2(D − A − 2) and
Pg,T2(D−A−2−dψ) have the same eigenvalues, for any2 ∈ C and anyψ ∈ C2(T2;C).

3. Proof of theorem 1.1

The proof of theorem 1.1 comes from the assumptionV ∈ L∞(T2), (2.6) of corollary 2.2
and the theorem below.

Theorem 3.1.For anyω ∈ S1, the unit sphere ofR2, there existθω ∈ R2, cω > 0, an integer
m = m(ω) ∈ N and a sequence of non-negative real numbers(λk), with limk 7→∞ λk = +∞,
such that for anyk,

‖ Pg,T2(D − A− θω − iλkG(ω))u ‖> λ
1

m+1
k cω ‖ u ‖ ∀u ∈ C∞(T2). (3.1)

G(ω) = d(ωx + ψω) with ψω ∈ C∞(T2;R)∫
T2
ψω dx = 0 s.t.1g(ωx + ψω) = 0. (3.2)
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‖ . ‖ denotes theL2
g-norm onT2, and1g = −Pg(D) is theg-Laplace–Beltrami operator,

and as1g(ωx) is always a periodic function orthogonal to the constants inL2
g(T2), the

functionψω exists and is unique.

Remark 3.2.We just have to prove equation (3.1) for the special conformal metric|g|−1/2g.
If g̃ = |g|−1/2g, thengjk|g|1/2 = g̃jk and |g̃| = 1.
The estimate (3.1) becomes∫

T2
|g|−1/2|Pg̃,T2(D − A− θω − iλkG(ω))u|2 dx > λ

2
m+1
k c2

ω

∫
T2
|g|1/2|u|2 dx.

As |g| and |g|−1 are bounded, the estimate is equivalent to∫
T2
|Pg̃,T2(D − A− θω − iλkG(ω))u|2 dx > λ

2
m+1
k c̃2

ω

∫
T2
|u|2 dx.

So from now on we will assume|g| = 1 and, due to (2.5) we will work in the particular
gauge div(Ag) = 0, whereAg is the vector field associated to the one-formA by the metric
g, (g(Ag, .) = A),
|g| = 1 A = J ?(dφ) = −

∑
k

g2k∂xkφ(x) dx1+
∑
k

g1k∂xkφ(x) dx2 (3.3)

where J ? is the natural involution onT ?(T2) and φ(x) is the unique periodic function
satisfying (we can choose a gaugeA such that

∫
T2 A

g ∧ θ dx = 0, ∀θ ∈ R2)

1gφ(x) = B(x) and
∫
T2
φ(x) dx = 0. (3.4)

For the proof of theorem 3.1, let us introduce the Pauli operators on(L2(T2))2.
For any complex one-formN =∑j Nj (x) dxj ,Nj ∈ C∞(T2;C), we let

M∓(D −N) =
∑
k

h1k(Dxk −Nk(x))∓ i
∑
k

h2k(Dxk −Nk(x)) (3.5)

and

M̃∓(D −N) =
∑
k

(Dxk −Nk(x))h1k ∓ i
∑
k

(Dxk −Nk(x))h2k. (3.6)

The matrix(hjk) is the square root of(gjk):

hjj > 0 hjk = hkj
∑
q

hjqhqk = gjk.

((M∓(D −N))? = M̃±(D − N̄).)
With the choice ofA in (3.3) we get,∀2 ∈ C2,

e∓φM∓(D − A−2)e±φ = M∓(D −2)
e∓φM̃∓(D − A−2)e±φ = M̃∓(D −2) (3.7)

(on the basis that, ifh is the matrixh = (hjk) andσ2 =
(

0 −i
i 0

)
the Pauli matrix, then

h−1σ2 = σ2h).
Let us define the two Pauli operators:

D(D −N) =
(

0 M−(D −N)
M+(D −N) 0

)
(3.8)

D̃(D −N) =
(

0 M̃−(D −N)
M̃+(D −N) 0

)
. (3.9)
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If dN = BN dx1 ∧ dx2, then

D̃(D −N)D(D −N) =
(
P(D −N)− BN 0

0 P(D −N)+ BN
)

(3.10)

andD̃(D − N̄) = (D(D −N)?.
Lemma 3.3.If µ1(λ, ω, θ) is the first eigenvalue ofPg,T2(D − A− θ)+ λ2|G(ω)|2gx , then

‖ D(D − A− θ − iλG(ω))I(u) ‖> (2µ1(λ, ω, θ))
1/2 ‖ u ‖, ∀u ∈ C1(T2) (3.11)

and∀(θ, ω, λ) ∈ R2× S1× R, if I(u) =
(
u

u

)
, for anyu ∈ L2(T2).

Proof of lemma 3.3.Taking into account that|g| = 1 by (3.3), we check the identities

M∓(D − A− θ − iλG(ω)) = M∓(D − A− θ ± λR(ω))
M̃∓(D − A− θ − iλG(ω)) = M̃∓(D − A− θ ± λR(ω)) (3.12)

with R(ω) the real closed one-form (thanks to (3.2)), linear inω, defined by

R(ω) = J ?(G(ω)) (dR(ω) = 1g(ωx + ψω) = 0). (3.13)

So, as for (3.10) we get

(D(D − A− θ − iλG(ω)))?D(D − A− θ − iλG(ω))

=
(
Pg,T2(D − A− θ − λR(ω))− B 0

0 Pg,T2(D − A− θ + λR(ω))+ B
)
(3.14)

and then, for any functionu ∈ C2(T2),

‖ D(D − A− θ − iλG(ω))I(u) ‖2

= 2< Pg,T2(D − A− θ)u|u >L2(T2) +2λ2
∫
T2
|G(ω)|2g × |u|2 dx. (3.15)

We used the fact thatJ ? is isometric,|R(ω)|g = |J ?(G(ω))|g = |G(ω)|g. �

Lemma 3.4.Let ω ∈ S1. There existsθ0 = θ0(ω) ∈ R2 satisfying: for anyη > 0 there
existsc2(η) = c2(η, ω) > 0, such that,∀θ ∈ R2 such thatd0(θ ± (θ0 + λθ1(ω));0?) > η,
then

‖ D̃(D − A− θ − iλG(ω))U ‖> c2(η) ‖ U ‖ ∀U ∈ (C1(T2))2 ∀λ ∈ R (3.16)

d0(·; ·) denotes the standard Euclidean distance and

θ1(ω) = (θ1(ω), θ2(ω)) =
(
−
∑
j

g
2j
0 wj,

∑
j

g
1j
0 wj

)
g
kj

0 =
1

|T2|
∫
T2

[
gkjx +

(∑
m

∂xmg
km
x

)
(1g)

−1

(∑
m

∂xmg
jm
x

)]
dx.

Proof of lemma 3.4.Let R(ω) be the one-form defined by (3.13) and let

Ng =
∑
j,k

∂xj h
kj (−h2k dx1+ h1k dx2). (3.17)
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Then, ifU =
(
u+

u−

)
∈ (C1(T2))2,

‖ D̃(D − A− θ − iλG(ω))U ‖2=‖ M+(D − A−Ng − λR(ω)− θ)u+ ‖2

+ ‖ M−(D − A+Ng + λR(ω)− θ)u− ‖2 . (3.18)

But, as for the definition ofφ(x) in (3.3) and (3.4), we can findθ0 ∈ R2, two real, periodic
functionsψ(x) andϕ(x) such that

Ng = d(θ0x)+ dϕ(x)+ J ?(dψ). (3.19)

(ψ, ϕ ∈ C∞(T2;R).) By (3.13),

R(ω) = d(θ1(ω)x + ϕω) with ϕω(x) ∈ C∞(T2;R). (3.20)

Taking into account (3.7) and (3.18), we get

‖ D̃(D − A− θ − iλG(ω))U ‖2=‖ e−(φ+ψ−iϕ−iλϕω)M+(D − θ0− λθ1(ω)− θ)
×e(φ+ψ−iϕ−iλϕω)u+ ‖2 + ‖ e−(−φ+ψ+iϕ+iλϕω)

×M−(D + θ0+ λθ1(ω)− θ)e(−φ+ψ+iϕ+iλϕω)u− ‖2 . (3.21)

So there exists a constantCA,g > 0 such that

‖ D̃(D − A− θ − iλG(ω))U ‖2

> CA,g{‖ M+(D − θ0− λθ1(ω)− θ)e(φ+ψ−iϕ−iλϕω)u+ ‖2

+ ‖ M−(D + θ0+ λθ1(ω)− θ)e(−φ+ψ+iϕ+iλϕω)u− ‖2}
= CA,g{〈Pg,T2(D − θ0− λθ1(ω)− θ)e(φ+ψ−iϕ−iλϕω)u+|e(φ+ψ−iϕ−iλϕω)u+〉L2(T2)

+〈Pg,T2(D + θ0+ λθ1(ω)− θ)e(−φ+ψ+iϕ+iλϕω)u−|e(−φ+ψ+iϕ+iλϕω)u−〉L2(T2)}.
(3.22)

Finally, changingCA,g from (3.22) the estimate follows

‖ D̃(D − A− θ − iλG(ω))U ‖2

> CA,g{‖ (D − θ0− λθ1(theta1(ω)− θ)e(φ+ψ−iϕ−iλϕω)u+ ‖2

+ ‖ (D + θ0+ λθ1(ω)− θ)e(−φ+ψ+iϕ+iλϕω)u− ‖2} (3.23)

which proves (3.16). �

Lemma 3.5.For anyω ∈ S1, there exists an integerm ∈ N and a constantCω such that

µ1(λ, ω, θ) > λ
2

m+1 /Cω ∀λ > 1/Cω θ ∈ K. (3.24)

µ1(λ, ω, θ) denotes the first eigenvalue ofPg,T2(D − A− θ)+ λ2|G(ω)|2gx .

Proof of lemma 3.5.The min–max principle (see [R-S]), gives the formula of the ground
state energy

µ1(λ, ω, θ) = inf
‖u‖=1

{
‖ M+(D − A− θ)u ‖2 +

∫
T2
(λ2|G(ω)|2gx + B(x))|u|2 dx

}
. (3.25)

From (3.25), (3.18) and (3.21) it is sufficient to prove (3.24) whenA = 0, (B is bounded).
If |G(ω)|gx > 0, ∀x ∈ T2, then (3.24) is obvious withm = 0.

But the zeros of the functionx 7→ |G(ω)|gx , if they exist, are isolated:

|G(ω)|gx = 0⇐⇒ x ∈ Z = {z1, . . . , zN }. (3.26)
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More precisely, for each zerozj there exists an integermj ∈ N and a constantCj such that

C−1
j |x − zj |mj 6 |G(ω)|gx 6 Cj |x − zj |mj if |x − zj |mj 6 C−1

j . (3.27)

To be convinced, recall thatG(ω) = dfω with fω(x) = ωx +ψω(x) which is ag-harmonic
function. But it is well known that for anyx0 ∈ T2, there exist local coordinates in
a neighbourhood ofx0 such that the metricg becomes conformal to the flat one, see
for example [Sp]. (Take for exampley = (y1(x), y2(x) with yj (x)g-harmonic functions,
dy1,x0 6= 0 and dy2 = J ?(dy1).)

So the functionfω is (locally) the real part of some holomorphic function, for some
locally complex structure, and then (3.26) and (3.27) are valid.

We get from (3.26) and (3.27) that, ifA = 0, there existsCω such that

inf
j
{µ1,j (λ, ω)} 6 inf

j
{µ0

1,j (λ, ω)} 6 C0
ωµ1(λ, ω, θ) ∀λ > Cω θ ∈ K (3.28)

for some constantC0
ω, if µ1,j (λ, ω) is the first eigenvalue of the Schrödinger operator

−1 + λ2C−1
ω |x − zj |2mj on L2(R2), and if µ0

1,j (λ, ω) is the one for the Dirichlet problem
on the ballB(zj ;C−1

ω ) of the same operator.
So by scaling we get from (3.28)

inf
j
{λ

2
mj+1µ1,j } 6 Cωµ1(λ, ω, θ) ∀λ > Cω θ ∈ K (3.29)

if µ1,j is the first eigenvalue of the Schrödinger operator−1+ |x|2mj on L2(R2).
The second estimate of (3.28) (the right one), can be obtained in the following way.
We take a smooth partition of unity{ϕ0, ϕ1, . . . , ϕN } on T2 such that

N∑
j=0

ϕ2
j (x) = 1 Supp(ϕj ) ⊂ B(zj ;C−1

ω ) Supp(ϕ0) ∩ B(zj ; 1
2C
−1
ω ) = ∅

for j = 1, . . . , N.

For anyu ∈ H 1(T2), sinceM+(D) is a one-form
N∑
j=0

ϕjM
+(D)(ϕj ) = 0 and M+(D)(ϕju) = ϕjM+(D)(u)+ uM+(D)(ϕj )

it follows that

‖ M+(D)u ‖2=
N∑
j=0

‖ ϕjM+(D)u ‖2=
N∑
j=0

[‖ M+(D)(ϕju)− uM+(D)(ϕj ) ‖2

=
N∑
j=0

[‖ M+(D)(ϕju) ‖2 + ‖ uM+(D)(ϕj ) ‖2]

−
N∑
j=0

[〈M+(D)(ϕju)|uM+(D)(ϕj )〉 + 〈uM+(D)(ϕj )|M+(D)(ϕju)〉].

Writing

〈M+(D)(ϕju)|uM+(D)(ϕj )〉 + 〈uM+(D)(ϕj )|M+(D)(ϕju)〉 = 2 ‖ uM+(D)(ϕj ) ‖2

+〈M+(D)(u)|uϕjM+(D)(ϕj )〉 + 〈uϕjM+(D)(ϕj )|M+(D)(u)〉
then summing, we get the equality

‖ M+(D)u ‖2=
N∑
j=0

‖ M+(D)(ϕju) ‖2 −
∫
T2
|u|2

N∑
j=0

|M+(D)(ϕj )|2 dx.
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We recall thatµ0
1,j (λ, ω) 6 λ2C

−2mj−1
ω + µ0

1(ω) 6 λ2C
′
ω, for some constantC

′
ω > 1,

if λ > Cω, (µ0
1(ω) is the first eigenvalue of the Dirichlet problem associated to−1 on

B(zj ;C−1
ω )).

We recall also that

‖ M+(D)(ϕ0u) ‖2 +λ2 ‖ |G(ω)|gϕ0u ‖2> λ2(C ′′ω)
−1 ‖ ϕ0u ‖2

> (C1
ω)
−1 inf

k
µ0

1,k(λ, ω) ‖ ϕ0u ‖2

for some constantC ′′ω > 1, if C1
ω = C

′
ωC
′′
ω.

So, for anyj = 0, . . . , N ,

‖ M+(D)(ϕju) ‖2 +λ2 ‖ |G(ω)|gϕju ‖2> (C1
ω)
−1 inf

k
µ0

1,k(λ, ω) ‖ ϕju ‖2

and then

‖ M+(D)(u) ‖2 +λ2 ‖ |G(ω)|gu ‖2> [(C1
ω)
−1 inf

k
µ0

1,k(λ, ω)− Cω,2] ‖ ϕju ‖2

with Cω,2 the maximum onT2 of
∑
j |M+(D)(ϕj )|2.

The second estimate of (3.28) follows for largeλ, (µ0
1,j (λ, ω) 7→ +∞ whenλ 7→ +∞).

�

End of the proof of theorem 3.1.We have seen that it is sufficient to take0 = Z2. Let θω
such thatθω,1± θ0

1 6∈ 2πZ and letµ > 0 such thatµθ1
1(ω) ∈ 2πZ.

Then we can take(λk) = (n(k)µ) for any increasing sequence of non-negative integer
(n(k)), therefore there existsη > 0 such thatd0(θω ∓ (θ0+ λkθ1(ω));0?) > η.

With λ = λk, applying lemma 3.4 toU = D(D − A − θω − iλkG(ω))I(u) and then
using lemma 3.3 to estimateU above, we get (3.1) from (3.10), (3.16), (3.11), lemma 3.5
and fromB ∈ L∞(T2). �

Remark 3.6.There existsω ∈ S1 such thatm = 0 in (3.1), iff F?(g) = c(y)g0, for some
non-negative andu(0)–periodic functionc(y) ∈ C∞(R2), with u ∈ GL(2;R) andF is a
R2-diffeomorphism of the formF(x) = u(x)+ (ψ1(x), ψ2(x)), with ψj(x) ∈ C∞(T2).

If ω ∈ S1 is such that|G(ω)|gx > 0, then ψ1(x) = ψω(x) − ψω(0) and F =
(f1, f2), f1(x) = ωx + ψ1(x), andf2(x) = ω̃x + ψ2(x) is the g-harmonic function such
that df2 = J ?(df1) andf2(0) = 0.

The fj areg-harmonic andF(0) = u(0), u(x) = (ωx, ω̃x).
Otherwise, using semiclassical analysis method as in [H-M-1], one can get easily the

equivalence in (3.24):µ1(λ, ω, θ)/λ
2

m+1 is also bounded.
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